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ABSTRACT

This research compares reanalysis-derived proxy soundings from the North AmericanRegional Reanalysis

(NARR) with collocated observed radiosonde data across the central and eastern United States during the

period 2000–11: 23 important parameters used for forecasting severe convection are examined. Kinematic

variables such as 0–6-km bulk wind shear are best represented by this reanalysis, whereas thermodynamic

variables such as convective available potential energy exhibit regional biases and are generally over-

estimated by the reanalysis. For thermodynamic parameters, parcel-ascent choice is an important consider-

ation because of large differences in reanalysis low-level moisture fields versus observed ones. Results herein

provide researchers with potential strengths and limitations of usingNARRdata for the purposes of depicting

climatological information for hazardous convective weather and initializing model simulations. Similar

studies should be considered for other reanalysis datasets.

1. Introduction

Past research using reanalysis data has provided sig-

nificant insight into the understanding of climatological

distributions and trends of parameters associated with

severe convective storms (e.g., Brooks et al. 2003, 2007;

Craven et al. 2004; Gensini and Ashley 2011; Allen and

Karoly 2014). In essence a three-dimensional best-guess

snapshot of the atmosphere in time, reanalysis aims to

provide an objectively modeled baseline dataset that

serves to fill data-void areas in the coarse-density ra-

diosonde network. The goal of reanalysis is to assimilate

data from multiple observation platforms (e.g., surface

observations, satellite information, and radiosondes)

into a numerical weather prediction model to provide

a climatological snapshot of conditions that is as close to

reality as possible. The final product of atmospheric

reanalysis is a large (potentially global) dataset that has

greater spatiotemporal resolution than that of observed

sounding data. These data are regularly used to conduct

historical meteorological analyses, create climatological

information and graphics, or initialize boundary condi-

tions for historical model simulations.

Reanalysis datasets are currently a popular data source

for researchers (we counted 3140 peer-reviewed journal

articles from 2010 to 2011 with ‘‘reanalysis’’ in the title or

abstract), but little peer-reviewed research has examined

how the filtered nature (e.g., limited vertical levels) of re-

analysis data may affect convectively pertinent variables.

For example, a documented problem of reanalysis for

convective purposes is the overestimation of environments

that are favorable for hazardous convective weather

(HCW) in southern Texas (Gensini and Ashley 2011).

Thus, it is hypothesized that the limited vertical resolu-

tion from the reanalysis model surface to;3000m AGL

poorly captures sharp changes in temperature, affecting

the calculation of convective inhibition (CIN) produced
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by an elevated mixed layer (EML), as described by

Lanicci and Warner (1991). A recent international study

revealed similar problems with CIN calculations over

HCW-favored regions of Australia (Allen and Karoly

2014). Thus, the purpose of this research is to examine

the modeled reanalysis proxy soundings in conjunction

with collocated observed sounding data, specifically an-

alyzing key convective variables. Results from this study

provide researchers with potential strengths and limita-

tions of using North American Regional Reanalysis

(NARR) data for purposes of depicting HCW climato-

logical information and initializing model simulations.

2. Background

Two other studies have examined the relationship be-

tween radiosonde data and reanalysis output for purposes

of studying severe convection (Lee 2002; Allen and

Karoly 2014). Lee (2002) showed that reanalysis proxy

soundings provide a reasonable approximation of the

convective environment when compared with collo-

cated soundings: kinematic variables were found to be

best represented by reanalysis whereas thermodynamic

parameters sometimes contained large differences that

resulted from errors in low-level moisture fields (Lee

2002). Lee’s (2002) research was conducted with coarse-

resolution global reanalysis data, whereas this study uses

a higher-spatial resolution reanalysis, both in the verti-

cal and horizontal planes, in an attempt to best compare

the observed and reanalyzed convective environment.

Allen and Karoly (2014) examined European Centre for

Medium-Range Weather Forecasts Interim Re-Analysis

(ERA-Interim) data in comparison with observations

for ;20 radiosonde stations and;3700 soundings over

Australia. Results from Allen and Karoly (2014) sup-

port the findings shown in Lee (2002).

a. Reanalysis datasets for convective research

Coarse-resolution global reanalysis datasets such as

the National Centers for Environmental Prediction–

National Center for Atmospheric Research (NCEP–

NCAR) global reanalysis (Kalnay et al. 1996) have been

utilized (Brooks et al. 2003, 2007) for global perspectives

of severe convective environments over long time pe-

riods (available from 1949 to the present). A higher-

spatiotemporal-resolution reanalysis overNorthAmerica

(NARR; Mesinger et al. 2006) was used by Gensini and

Ashley (2011) to examine severe convective environ-

ments over the United States in greater detail (available

from 1979 to the present). NARR provides researchers

with a temporally consistent climate-data suite for North

America (Mesinger et al. 2006) and is preferred over

other global reanalysis data for this study because of its

superior vertical resolution. Native NARR gridded bi-

nary data have a horizontal resolution of 32km, a vertical

resolution of 45 s layers, and temporal resolution of 3 h.

NARR uses the 2003 operational Eta Model as part of

the assimilation cycle (G. Manikin 2010, personal com-

munication). In comparison, the NCEP–NCAR global

reanalysis has a 210-km horizontal resolution, vertical

FIG. 1. Locations of 21 radiosonde stations used in this study.
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resolution of 28 s layers, and temporal resolution of 6 h.

Using NARR data for this study provides superior ver-

tical resolution, but the corresponding horizontal domain

is limited to North America.

3. Method

Raw radiosonde data for 0000 UTC from 2000 to 2011

were obtained from the University of Wyoming’s online

data archive (http://weather.uwyo.edu/upperair/sounding.

html) for 21 stations east of the U.S. continental divide

(Fig. 1), where HCW is climatologically favored (Brooks

et al. 2003; Gensini and Ashley 2011). Synoptic off-hour

(i.e., 1800, 2100 UTC, etc.) radiosonde launches were

omitted from this study because of their limited sample

size. Reanalysis proxy soundings were obtained by ex-

tracting point data from 0000 UTCNARR files using the

Model Gridded Binary (GRIB) Data Sounding program

(GRBSND), available in the Weather Processor

6 (WXP) software package from Unisys. Customized

Python software routines were used to calculate 23 dif-

ferent convectively important variables and composite

parameters (listed with their abbreviations in Table 1), to

quality control sounding data, and to store values in

comma-separated-value (CSV) format. In an effort to

evaluate only surface-based convectively favorable en-

vironments, only soundings with nonzero surface-based

CAPE were considered for this study.

As previously mentioned, low-level thermodynamic

errors could be particularly problematic for variables

that rely on vertical integration (e.g., CAPE, or any

composite parameter that utilizes CAPE in its calcula-

tion). This study employs different parcel-ascentmethods

on all thermodynamic parameters to see whether a ‘‘best

choice’’ exists for researchers using NARR. Thus, two

parcel-ascent trajectorieswere calculated [100-hPamixed

layer (ML) and surface-based (SB)] and were applied to

all thermodynamic parameters and composite indices. A

100-hPa ML parcel averages the thermodynamic values

(i.e., temperature T and dewpoint Td) in the lowest

100hPa of the atmosphere, whereas an SB parcel uses the

T and Td at the surface of the atmosphere (or model) to

calculate various indices. The distributed NARR dataset

has five vertical levels that fall in the lowest 100hPa of the

model (1000, 975, 950, 925, and 900hPa), whereas a typi-

cal radiosonde launch will have approximately eight data

points in the lowest 100hPa. Note that all parcel routines

in this study utilize the virtual temperature correction,

because it can result in larger and more realistic values of

CAPE (Doswell and Rasmussen 1994).

Values of the square of correlation coefficient R2 and

root-mean-square error (RMSE) (along with standard

linear regression slope and y-intercept values) were

computed between grouped observed sounding-derived

parameter values and the concurrent pair of reanalysis

values. RMSE was calculated with the formula [fol-

lowing the method of Wilks (1995)]

RMSE5

�
1

N
�(NARRn 2OBn)

2

�1/2
,

where the sum is from n 5 1 to N, N is the number of

values in each group, NARRn is the nth reanalysis value,

and OBn is the nth observed value. Thus, RMSE repre-

sents a typical error (reanalysis minus observed) magni-

tude for each group of paired observations. To visualize

the results, 2D histograms were plotted for all stations

(Fig. 1) and all variables (Table 1). All 2D histograms

were constructed using Python and the Matplotlib ex-

tension library software (Hunter 2007). The 1:1 black line

on each plot represents a perfect correlation (i.e., NARR

value 5 observed radiosonde value).

TABLE 1. Convective variables and composite indices examined in

this study.

Abbreviation Parameter

SBCAPE Surface-based convective available

potential energy

MLCAPE 100-hPa mixed-layer convective

available potential energy

SBCIN Surface-based convective inhibition

MLCIN 100-hPa mixed-layer convective inhibition

SBLI Surface-based lifted index (calculated at

500 hPa)

MLLI 100-hPa mixed-layer lifted index

(calculated at 500 hPa)

SBLCL Surface-based lifting condensation level

MLLCL 100-hPa mixed-layer lifting condensation

level

03SRH 0–3-km storm relative helicity

01SRH 0–1-km storm relative helicity

7/5LR 700–500-hPa lapse rate

SCP Supercell composite parameter (using

a surface-based parcel)

STP Significant tornado parameter (using

a surface-based parcel)

01EHI 0–1-km energy helicity index (using

a surface-based parcel)

FRZGLVL Freezing level

SFCTd Surface dewpoint

850Td 850-hPa dewpoint

200WND 200-hPa wind velocity

500WND 500-hPa wind velocity

850WND 850-hPa wind velocity

Tc Convective temperature

6BWD 0–6-km bulk wind difference

CB Craven–Brooks significant severe

parameter (using a surface-based

parcel)
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4. Results

The 2D histograms were useful in comparing the

distributions between NARR and observed soundings

(Fig. 2). For example, in Fig. 2a, one can see that SBCAPE

values at Topeka, Kansas (KTOP), have a positive bias

(i.e., NARRSBCAPE tends to exceed observed SBCAPE

values) with an RMSE value of 1637 Jkg21. In Fig. 2b,

however, good correlation (R2 5 0.88) is found between

NARR and observed 6BWD, exhibiting an RMSE of

only 2.7 kt (1kt ’ 0.51m s21).

a. Correlation

Table 2 displays R2 values for all 23 parameters and

21 sounding locations. In broad terms,R2 values are found

to be higher for kinematic variables for variables such as

6BWD and show less correlation for thermodynamic

variables such as SBCAPE. This is an expected result,

because R2 values are typically lower for derived vari-

ables and composite parameters, where compounding

error (e.g., calculation of a product) reduces correlation

values. In addition, composite parameters such as STP

may be biased with errors from other variables that

enter the calculation (e.g., 01SRH). Out of the 23 pa-

rameters examined, FRZGLVL exhibited the highest

R2 values and STP exhibited the lowest values regardless

of station location. Seven variables (7/5LR, FRZGL,

850WND, 500WND, 200WND, 6BWD, and CB) exhib-

ited good ($0.75) correlation, nine variables (SBCAPE,

SBLI, SBLCL, 03SRH, 01SRH, SCP, 01EHI, SFCTd,

and Tc) displayed fair (0.25. x. 0.75) correlation, and

seven variables (MLCAPE, SBCIN, MLCIN, MLLI,

MLLCL, STP, and 850Td) presented poor (#0.25) R2

values (Table 3).

Perhaps most interesting are the relatively low R2

values associated with SFCTd and 850Td, because these

values are not derived. SFCTd R2 values ranged from

0.37 to 0.63, and 850Td R
2 values ranged from 0 to 0.43,

which would be associated with fair to poor agreement

(respectively) in this context. This is important, because

FIG. 2. Comparison between NARR and observed (a) SBCAPE, (b) 6BWD, (c) LCL, and (d) SFCTd for all events

during 2000–11 with nonzero SBCAPE at KTOP.
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small errors in the low-level moisture fields may yield

large differences in derived quantities such as CAPE.

These differences in low-level moisture proved to have

an important impact on parcel choice, because all SB

parcel parameters exhibited fair correlation, whereas all

ML parcel parameters correlated poorly. To visualize

this error, consider the differences in the NARR and ob-

served skew T–logp diagrams from Jackson, Mississippi

(KJAN), valid 0000UTC 20April 2011, when an outbreak

of severe thunderstorms was observed across portions

of the Ohio and Tennessee Valleys (Fig. 3). Whereas

SBCAPE calculations were very similar for NARR and

observed soundings (3254 and 3035 J kg21, respectively;

Figs. 4a,c), MLCAPE calculations differed by over

1800 J kg21 (Figs. 4b,d).

Such differences in NARR versus observed low-level

moisture fields also influence other variables. In fact, all

sites increased correlation values (by an average of

0.17) when examining SB versus ML LCL (Fig. 5). An

examination of all 2D histograms suggests that NARR

TABLE 3. Subjective characterization of parameter R2 values.

Good Fair Poor

7/5LR SBCAPE MLCAPE

FRZGLVL SBLI SBCIN

850WND SBLCL MLCIN

500WND 03SRH MLLI

200WND 01SRH MLLCL

6BWD SCP STP

CB 01EHI 850Td

SFCTd

Tc

FIG. 3. KJAN observed (red, labeled with ‘‘a’’) and NARR (blue, labeled with ‘‘b’’) soundings valid 0000 UTC

20 Apr 2011. Parameters shown are calculated using a surface-based parcel.
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variance of MLLCL is too small (Fig. 5b). This error is

due to correlation observed with 850Td. SFCTd values

exhibited fair correlation, but 850Td correlation was an

average of 0.36 points lower. Thus, an SB parcel using

SFCTd has a higher probability of lifting a parcel with

similar surface moisture values. Averaging the moisture

content of the lowest 100hPa is more likely to inad-

equately represent the observed convective environment

(especially at higher-elevation locations), however. As

a consequence, the improvements to correlation for

ML over SB versions of LCL, CAPE, and LI are linked

to poor representation of lower-tropospheric mois-

ture, especially in the 925–850-hPa levels. The only

exception to parcel choice was CIN, where both SB

and ML CIN exhibited poor R2 values (0.12 and 0.11,

respectively).

FIG. 4. The 0000 UTC 20 Apr 2011 KJAN (a) SB parcel observed, (b) ML parcel observed, (c) SB NARR parcel, and (d) ML NARR

parcel.
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b. Bias/error

Intercept and slope values were calculated for all pa-

rameter and station combination linear regression lines

(not shown). These values indicate the bias of each group

distribution, because they quantify the difference between

the parameter subset regression and the 1:1 line (which has

an intercept of 0 and a slope of 1). Similar to correlation

results, it was found that kinematic parameter values

agreed better with observations than did thermodynamic

parameters. Nearly all kinematic variables exhibited a lin-

ear regression slope of 1 and a y intercept near 0. In ad-

dition, parameters related to midlevel environmental

conditions performed better than those calculated from

near-surface data. Nearly all bias and error can be

traced back to errors in the NARR lower-tropospheric

moisture fields. For instance, the average RMSE for

850Td at all stations was 98C (Table 4). These low-level

moisture errors create large RMSE values for variables

that depend on the near-surface environment (e.g., SB

and MLCAPE station-averaged RMSE values of 1465

and 1378 J kg21, respectively). Such errors are then

compounded in composite parameters such as SCP and

STP that utilize CAPE as a measure of static stability.

Large bias and error were also found in CIN fields. In

particular, NARR fields commonly underestimated the

strength of a temperature inversion associated with the

EML. Bias is demonstrated by Tc slope values near 1, with

an average y intercept near 48C, thus indicating that

NARR typically underestimates Tc by roughly 48C. Sub-
jective examination of several comparison soundings sug-

gests that rapid vertical changes in temperature associated

with the EML are poorly represented in most NARR

soundings. This supports the hypothesis herein thatNARR

inadequately represents sharp temperature changes asso-

ciated with the EML and results conveyed in previous re-

search (i.e., Brooks et al. 2003; Gensini and Ashley 2011;

Allen and Karoly 2014). This bias may be explained by the

parameterizations used by the NARR model assimilation.

The NARR employs the Betts–Miller–Janji�c convective

parameterization (Janji�c 1990, 1994). Given that errors in

SFCTd could be considered as acceptable, this suggests that

the modeled mixing within the boundary layer is not ade-

quately replicating the convective transport of near-surface

moisture throughout the lower troposphere.

5. Summary and conclusions

Over 100 000 reanalysis and observed soundings were

compared across 21U.S. upper-air sites during the period

2000–11. This analysis was conducted, in part, to examine

how well the reanalysis environment depicts observed

and derived variables, specifically focusing on variables

related to severe-storm forecasting. In general, kinematic

variables are best represented by NARR and thermo-

dynamic variables suffer from errors originating in low-

level moisture fields. Therefore, when analyzing NARR

convective fields, parcel-ascent choice is an important

consideration. Surface-based parcels performed better

than 100-hPa mixed-layer parcels, as indicated by less

RMSE being found in SFCTd fields. Variables best re-

solved by NARR include 7/5LR, FRZGL, 850WND,

500WND, 200WND, 6BWD, and CB. Large RMSE and

low correlation values were found with MLCAPE,

SBCIN,MLCIN,MLLI,MLLCL, STP, and 850Td. Thus,

research utilizing NARR low-level fields, and any con-

clusions drawn from them, should be done with caution.

Overall, NARR provides an invaluable tool to con-

vective researchers because soundings can be derived at

FIG. 5. Comparison of NARR and observed (a) SBLCL and

(b) MLCL for North Platte, NE (KLBF), for all events during

2000–11 with nonzero SBCAPE.
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spatiotemporal resolutionsmuch greater than the current

radiosonde network. This feature is especially useful for

climatological studies that wish to better understand the

distribution of environments favorable for severe storms.

With these results, bias correction can now be utilized on

large-scale climatological studies using similar parame-

ters. Researchers wishing to use NARR fields to initial-

izemodel simulations should be aware of potential errors

in lower-tropospheric moisture values and sharp vertical

changes in temperature associated with an EML. When

possible, such initializations should try to correct such

errors or supplement NARR fields with observed sound-

ings. Last, researchers using reanalysis datasets to analyze

convectively pertinent variables should consider examin-

ing their respective parameter biases before application.
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