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Abstract High-resolution dynamical downscaling is used to explore 2080–2090 peak-season
hazardous convective weather as simulated from the Community Climate System Model
version 3. Downscaling to 4 km grid spacing is performed using the Weather Research and
Forecasting model. Tornadoes, damaging wind gusts, and large hail are simulated using a
model proxy at hourly intervals for locations east of the U.S. Continental Divide. Future period
results are placed into context using 1980–1990 output. While a limited sample size exists, a
statistically significant increase in synthetic severe weather activity is noted in March, whereas
event frequency is shown to slightly increase in April, and stay the same in May. These
increases are primarily found in the Mississippi, Tennessee, and Ohio River valleys. Diurnally,
most of the increase in hazardous convective weather activity is shown to be in the hours
surrounding local sunset. Peak-season severe weather is also shown to be more variable in the
future with a skewed potential toward larger counts. Finally, modeled proxy events are
compared to environmental parameters known to generate hazardous convective weather
activity. These environmental conditions explain over 80 % of the variance associated with
modeled reports during March–May and show an increasing future tendency. Finally, chal-
lenges associated with dynamical downscaling for purposes of resolving severe local storms
are discussed.

1 Introduction

A major point of discussion in severe weather climatology surrounds the future of deep, moist
convection in an anthropogenically altered climate. Historically, the record of U.S. hazardous
convective weather (HCW; i.e., tornadoes, damaging wind gusts, and large hail) has been
driven largely by reporting. Problems associated with the reporting process and population
biases have made it difficult to determine trends from reports (see discussions in Doswell and
Burgess 1988; Grazulis 1993; Brooks and Doswell 2001; Brooks and Doswell 2002; Verbout
et al. 2006; and Doswell 2007).
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Due to the uncertainty associated with reports, recent research has instead examined
the variability of environmental conditions necessary for the formation of HCW. These
studies suggest that environmental conditions related to hazardous convective weather
will increase in response to elevated greenhouse forcing (Del Genio et al. 2007; Trapp
et al. 2007, 2009; Marsh et al. 2009; Van Klooster and Roebber 2009; Brooks 2013;
Gensini et al. 2014; Diffenbaugh et al. 2013; Allen et al. 2014). Despite the mounting
environmental evidence, recent climate change assessments have largely avoided any
conclusions regarding potential changes of HCW in a future climate (see discussions in
Alley et al. (2007) and Karl et al. 2009). The latest Intergovernmental Panel on Climate
Change (IPCC AR5) report lacks any definitive conclusions regarding extreme convec-
tive weather. This lack of confidence is primarily due to the opaque historical record of
HCW reports and the inability to directly link environmental control parameters to events
(Alexander and Coauthors 2013).

While Global Climate Model (GCM) output can simulate future environmental conditions
favorable for the formation of HCW, the grid spacing (typically on the order of 100-km) lacks
the ability to resolve processes associated with HCW. However, new research indicates that
synthetic reports produced by high-resolution (4 km; hourly) regional climate models can
accurately capture the spatio-temporal variability of observed reports when forced with coarse
resolution GCM-scale conditions (Trapp et al. 2011; Mahoney et al. 2012; Robinson et al.
2013; Gensini and Mote 2014; Sanderson et al. 2014). Dynamical downscaling for purposes of
resolving HCWevents has yet to be performed on GCM-scale future projections. Thus, this is
the first study to compare historical and future synthetic severe weather reports from the same
GCM.

2 Background

Dynamically downscaled global reanalysis data (with an initial input horizontal grid
spacing similar to many GCMs) has accurately represented HCW during the peak of
the convective season (May–June; Trapp et al. 2011; Robinson et al. 2013). The
Community Climate System Model version 3 (CCSM3) control run was also found
to accurately portray spatial and temporal variability during March–May while correctly
timing the diurnal hourly frequency of HCW (Gensini and Mote 2014). While dynam-
ical downscaling GCM output for purposes of resolving HCW is in its infancy, these
studies indicate a promising future of research.

Downscaling for HCW is recommended at a horizontal grid spacing≤4 km, as severe
convective storms can be permitted at this grid spacing (Weisman et al. 1997). The main
challenge associated with dynamical downscaling continues to be its computationally expen-
sive nature, though, there is little doubt this challenge will become increasingly less important
in the future. However, grid spacings from the latest suite of GCM models used for the IPCC
AR5 report ranged from 4° by 5° to about 1° by 1°, indicating that dynamical downscaling will
likely be pertinent for years to come.

As previously discussed, one must recognize several potential pitfalls when drawing
conclusions from the recorded history of HCW. Studies examining the past 30 years of
HCW activity using objective methods indicate that environmental conditions (Gensini
and Ashley 2011; Robinson et al. 2013) and modeled proxy reports (Robinson et al.
2013) have exhibited little to no trend, despite a significant increase in HCW reports the
same period. Inflation in HCW reporting is well documented in the literature (e.g.,
Doswell and Burgess 1988; Grazulis 1993; Brooks and Doswell 2001, 2002; Verbout
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et al. 2006; and Doswell 2007), and hence, recent increases in economic losses from
severe thunderstorms (Changnon 2001) and tornadoes (Brooks and Doswell 2001;
Changnon 2009) have been attributed to changes in the societal landscape (e.g., popu-
lation, property value) rather than an increase in the frequency of HCW events (Bouwer
2011).

While no trends in HCW synthetic reports or environments exist over the past 30 years,
several GCMs project a bullish increase in the ingredients supportive of HCW by the late 21st
century (Del Genio et al. 2007; Marsh et al. 2007; Trapp et al. 2007a, 2009; Van Klooster and
Roebber 2009; Diffenbaugh et al. 2013). Using dynamically downscaled data from the North
American Regional Climate Change Assessment Program (NARCCAP; Mearns et al. 2009,
2012), similar increases in HCW environments were found across a large portion of the U.S.
(Gensini et al. 2014) for a mid-century simulation spanning the period 2041–2065. These
studies agree that projected inflation in HCW activity are largely a function of increases in
convective available potential energy (CAPE), associated with augmentation in future period
near-surface specific humidity values during periods when deep-layer wind shear remains
adequate for organized convection.

While an environmental approach has been commonly used to this point, results herein give
researchers first glances into storm-scale responses to anthropogenically altered synoptic
convective environments. High-resolution dynamical downscaling for purposes of resolving
HCW has yet to be performed for future period GCM scenarios, prior to the work presented
here. Building from a previous historical scenario used in Gensini and Mote (2014), this study
presents the first results of potential future changes in U.S. severe weather activity using
synthetic reports derived from high-resolution dynamical downscaling.

3 Methodology

3.1 Model information

3.1.1 Global climate model

The CCSM3 is a coupled global climate spectral model consisting of atmosphere, land surface,
sea-ice, and ocean components. CCSM3 uses an 85-wavenumber triangular truncation grid
spacing (approximately 1.4° resolution at the equator) in the horizontal, and has 26 levels in
the vertical (Collins et al. 2006). Available output includes a control run (no changes in
external climate forcing), a 20th century simulation (containing the observed changes of
greenhouse gases, sulphate aerosols, volcanic aerosols, and solar irradiance from the 20th
century), and 21st century scenarios (containing estimated changes in greenhouse gas and
aerosol concentrations).

For the study presented here, two 11-year epochs were compared to evaluate potential
changes in future HCW activity. The historical (1980–1990) and future (2080–2090)
downscaled periods use data based on a simulation initialized in 1870 and simulated
through the end of the 21st century. This simulation utilizes data based on the special
report for emissions scenario (SRES) A2 scenario, characterized by, “a very heteroge-
neous world with continuously increasing global population and regionally oriented
economic growth that is more fragmented and slower than in other storylines”
(Nakicenovic et al. 2000). This aggressive, but not worse case, scenario is chosen in
an effort to assess potential changes in HCW to atmospheric responses associated with
increasing anthropogenic carbon emissions.
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3.1.2 Regional climate model

Regional Climate Model (RCM) configurations were chosen following previous research
downscaling CCSM3 historical fields (Gensini and Mote 2014). Thus, we again use the
non-hydrostatic advanced research core of the Weather Research and Forecasting (WRF-
ARW) model (Skamarock et al. 2008). Output fields from the CCSM3 at 0000 UTC on 1
March of each year are used to initialize the RCM. Integrations are then performed over a
three-month period, providing CCSM3 boundary conditions to the RCM every six hours,
while the first six hours of the simulation are discarded to account for model spin-up
(Skamarock 2004). This longer integration time is desirable as it supports better representation
of influences associated with longer-memory processes, such as soil moisture, known to
influence surface fluxes in the climate system (Gensini and Mote 2014). RCM diagnostics
and parameterization schemes follow those used in Gensini and Mote (2014), and are based on
previous WRF-model simulations of HCW in the United States (e.g., Weisman et al. 1997;
Kain et al. 2008; Trapp et al. 2011; Robinson et al. 2013).

The model-based proxy used in this research follows that used in Trapp et al. (2011) and
Gensini and Mote (2014), using hourly thresholds of updraft helicity (UH) and simulated
composite RADAR reflectivity factor (Z) as described by Kain et al. (2008). Specifically, a
synthetic HCW event occurs when an hourly RCM grid point contains UH values≥60 m2 s−2

juxtaposed with Z values≥40 dBZ (Fig. 1). This threshold UH/Z pair has been shown to best
approximate HCWactivity in the U.S. during a 1980–1990 historical simulation using CCSM3
(Gensini and Mote 2014).

Synthetic HCW reports are spatially aggregated to a 50 km grid and summed to create two
epoch (1980–1990; 2080–2090) climatologies for the months March–May. Based on observed
HCW reports during the historical period, bias correction is applied to both historical and
future periods following the method used in Gensini and Mote (2014). This is a desirable
procedure when applying a downscaling framework to GCM data (Christensen et al. 2008).
Finally, statistical significance was tested using the Mann–Whitney U test for the medians at
the 95 % confidence level.

3.2 Downscaling domain

Dynamical downscaling is applied to the same study region used in Gensini and Mote (2014),
and contains all points in the U.S. east of the Continental Divide. This domain contains
490,000 grid points in a Lambert Conformal Conic projection, equating to between 4 and
4.25 km grid spacing depending on latitude. Given the central Great Plains has the highest
annual frequency of HCW (Brooks et al. 2003b), it is hypothesized that potential changes in
HCW activity will be most prominent in this high frequency region. Changes in HCW
distributions may occur outside of this region due to a changing climate, but this study is
not able to address such scenarios.

4 Results

We begin with modeled proxy reports of HCW. Raw counts of synthetic HCW reveal a 27 %
increase in future period events. Stratifying by month, most of this increase is found in March
(increases approaching 70 %), whereas April shows a slight increase (15 %) and May remains
virtually unchanged (Fig. 2). This does not necessarily imply a shift in the temporal climax of
HCW; rather, a greater probability of such events earlier in the annual cycle, and thus an
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increase in the overall frequency is depicted. Examinations of seasonal HCW changes suggest
a future increase in the variability of peak-season events, indicated by a “fanning” of the
cumulative frequency through the months examined (Fig. 3). This is further shown by nearly a
doubling in standard deviation (778 to 1433 synthetic reports) from the historical to future
epoch and an increase in the coefficient of variation from .29 to .43 respectively. Interestingly,
recent research indicates that changes in annual variability are already being noted (Brooks
et al. 2014; Tippett 2014). From an environmental ingredients perspective, this variability is
primarily a function of adequate deep-layer wind shear juxtapositioning with CAPE. Conse-
quently, increases in peak-seasonal HCW variability suggest that synoptic scale controls, such
as jet-stream location, are likely to be different in a future climate. This variability is broadly
consistent with recent research relating arctic amplification with mid-latitude weather extremes
(Francis and Vavrus 2012; Petoukhov et al. 2013; Screen and Simmonds 2013) due to a
decline in Arctic sea-ice cover (Francis et al. 2009).

Similar to Gensini and Mote (2014), severe weather reports from the Storm Prediction
Center’s severe weather database (Schaefer and Edwards 1999) were used to provide a simple
bias correction factor to historical and future period proxy reports (Fig. 2), a necessary procedure
when downscaling GCM data (Christensen et al. 2008). These corrections do not affect the
fractional changes across epochs; they instead adjust the absolute magnitudes of change into a
context consistent with historical observed HCWreports. It should be noted that observed HCW
reports, in particular, are a challenge to bias correct due to the nature of the reporting process.
Lastly, modeled HCWreports are inherently biased toward the supercell spectrum of convective

Fig. 1 Progression of RADAR composite reflectivity factor (dBZ; fill) and 10-m wind (knots; wind barbs) from
2100 UTC 2May 2090 to 0200 UTC 3May 2090. Purple ovals highlight areas of proxy-based severe convective
weather reports
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mode due to the 4 km grid spacing of the RCM. The use of UHwould conceptually trigger more
supercell events (due to the associated size of a mesocyclone relative to the horizontal grid
spacing used) versus events produced by other convective modes (e.g., squall lines).

Spatially, the largest increases in future period HCW are depicted across the Middle
Mississippi, Lower Mississippi, Ohio, and Tennessee River valleys (Fig. 4). In these regions,
results indicate increases of 2–8+ HCW reports per season on average. Some isolated points in
and close to these regions depicted a statistically significant decrease. For example, a relative
cluster of notable decrease in HCW activity is shown across Florida in this simulation.
However, these statistically significant decreases (23 grid cells) are largely outweighed by
roughly 6.5 times more grid cells that illustrated a statistically significant increase across the
domain. Diurnally, the largest HCW frequency increases were found from 2100 to 0500 UTC
(Fig. 5), which coincides with the typical maximum in HCWacross the U.S. (Kelly et al. 1978).

Next, we focus on modeled composite reflectivity. While not a hazard itself, it can be used
as a surrogate to gauge updraft and storm intensity. This is not a new process as meteorologists
routinely use RADAR reflectivity to operationally imply storm intensity (Lemon 1977),
objectively track thunderstorm echoes (Dixon and Wiener 1993; Johnson et al. 1998; Han
et al. 2009) and classify potential hail size (Witt et al. 1998). The composite reflectivity value
of 50 dBZ was chosen due its documented ability to discriminate for severe hail events when
used with melting layer height (Donavon and Jungbluth 2007) and was again aggregated to a
50 km grid for comparison.

Significant increases in future period 50 dBZ values were found during the months of
March and April, while May showed no significant change (Fig. 6). Most of the increases in
March are identified in the southeast Great Plains through the southern and southeastern U.S.,
northward through the Mississippi and Ohio River valleys (Fig. 7). By April, a majority of the
increase has shifted northward into the Ohio River valley, consistent with the northward
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Fig. 2 Average monthly comparisons of raw and bias corrected synthetic severe weather reports. Error bars
indicate the standard error
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climatological shift of severe weather as the season progresses (Brooks et al. 2003a; Gensini
and Ashley 2011). Results herein suggest that late-century, early-season thunderstorms will be
of greater frequency, likely a function of robust increases in CAPE and near-surface specific
humidity depicted by several GCMs and RCMs (Del Genio et al. 2007; Trapp et al. 2007a,
2009; Van Klooster and Roebber 2009; Diffenbaugh et al. 2013; Gensini et al. 2014).

We conclude with a discussion of environmental control parameters known to favor deep
convection, specifically CAPE and 0–6-km bulk wind difference (BWD). An average increase
of 236 % is shown across all months of future period average frequencies of grid points with
CAPE exceeding 2000 J kg−1 (Fig. 8). This robust increase in CAPE is consistent with recent
studies examining ensembles of GCM output for convective purposes (Del Genio et al. 2007;
Trapp et al. 2007a, 2009; Diffenbaugh et al. 2013) during March–May. In addition, the product
of CAPE and 0–6 km BWD has been widely used to discriminate potential significant severe
weather environments for climatological purposes due to its ease of calculation (Brooks et al.
2003b). The calculation used herein follows the proximity Craven-Brooks composite meth-
odology of Gensini and Ashley (2011), restricting events to CAPE values exceeding
100 J kg−1. Similar to the synthetic HCW report distribution, the number of grid points with

Fig. 3 Cumulative frequency of historical (black) and future (red) period synthetic hazardous convective
weather reports. Thick black and red lines indicate averages for their respective period
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a product of CAPE and 0–6 km BWD exceeding 20,000 show a significant increase in March
and April, with no meaningful change in May (Fig. 9). There are only a few distinguishable
spatial shifts in the distribution of CAPE (Fig. 10a, b) and significant severe weather
environments (Fig. 10c, 10d) over the epochs examined. Rather, an overall general increase
is noted from the historical to the future period.

These results are corroborated by the agreement between large-scale instability/shear
parameters and modeled HCW reports. The product of CAPE and 0–6 km BWD exceeding
20,000 explains 81 % of the variability associated with HCW reports over the historical and
future periods examined (Fig. 11). This supports recent research depicting the ability of high-
resolution dynamical downscaling to replicate large-scale conditions forcing interannual and
sub-seasonal variability in HCWactivity (Gensini and Mote 2014). This result is significant, as
one of the main weaknesses in environmental analysis is the inability to discuss changes on the
storm-scale. It appears, however, that environmental analysis is an efficient predictor of HCW
occurrence across the domain and study periods analyzed.

5 Summary and conclusions

This study is the first to use dynamical downscaling for purposes of examining potential
changes in hazardous convective weather under a business-as-usual emissions scenario. Using

Fig. 4 Average difference between 2080–2090 and 1980–1990 modeled severe weather reports. Red (blue) grid
cells indicate a positive (negative) change in the average number of modeled reports per season. Triangles
indicate statistical significance at the 95 % confidence level
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data from the Community Climate System Model version 3 downscaled by the Weather
Research and Forecasting model, an artificial report proxy consisting of downscaled 2–5 km
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updraft helicity and RADAR composite reflectivity factor was used to simulate occurrences of
tornadoes, damaging wind gusts, and large hail at hourly intervals over the eastern two-thirds of
the U.S. during a historical (1980–1990) and future (2080–2090) period. Using observed severe
weather reports to bias correct, a significant future increase in hazardous convective weather
frequency and variability is revealed, especially during the afternoon hours during the months
of March and April. The largest increase in future severe weather events is found across the
Middle Mississippi, Lower Mississippi, Ohio, and Tennessee River valleys, with an overall
frequency increase of 27 %. Thus, this region would be poised to receive an additional 2–8+

Fig. 7 Average difference between 2080–2090 and 1980–1990 modeled composite reflectivity values≥50 dBZ
for March (a), April (b), May (c), and March–May (d). Red (blue) grid cells indicate a positive (negative) change
in the average number of modeled reports per season. Triangles indicate statistical significance at the 95 %
confidence level
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severe weather reports per 50 km grid box duringMarch–May. In addition, modeled composite
reflectivity, a surrogate for storm occurrence, is shown to significantly increase across a large
portion of the analyzed domain, again specifically during the months of March and April.
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Fig. 8 As in Fig. 4.6, but for grid cell counts with CAPE≥2000 J kg−1
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These results, along with a quickly growing body of literature, suggest that late-century
thunderstorms will be of greater intensity/frequency, likely a function of robust increases in
CAPE and near-surface specific humidity depicted by several GCMs and RCMs (Del Genio
et al. 2007; Trapp et al. 2007a, 2009; Van Klooster and Roebber 2009; Diffenbaugh et al.
2013; Gensini et al. 2014; Allen et al. 2014). These previous studies are solidified by results
presented herein, as large-scale environmental controls such as CAPE and deep-layer wind
shear are shown to explain over 80 % of the variability in modeled severe weather reports.

The main obstacle for this particular study is dataset length. Due to the computationally
expensive nature of dynamical downscaling, it was only feasible to examine two ten-year

Fig. 10 Average frequency of March–May historical (a) CAPE≥2000 J kg−1 and (b) the product of CAPE and
0–6-km BWD exceeding 20,000. Panels (c) and (d) represent the future period respectively. In the case of
CAPE×0–6-km BWD, CAPE is constrained to only evaluate events with ≥100 J kg−1
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periods. Ultimately, a multi-model ensemble approach over a period of 30 years would be most
desirable for this type of study, and accordingly, we are limited with our ability to make
definitive conclusions regarding severe weather in the late 21st century. However, this study
expands and existing body of literature indicating the potential for future increases in severe
convective weather (Del Genio et al. 2007; Trapp et al. 2007a, 2009; Van Klooster and
Roebber 2009; Diffenbaugh et al. 2013; Gensini et al. 2014; Allen et al. 2014). Overall,
dynamical downscaling for purposes of resolving mesoscale phenomenon, such as severe local
storms, continues to emerge as an admirable methodological technique for climate change
assessments.
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