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ABSTRACT

High-resolution (4km; hourly) regional climate modeling is utilized to resolve March–May hazardous con-

vective weather east of the U.S. Continental Divide for a historical climate period (1980–90). A hazardous

convective weathermodel proxy is used to depict occurrences of tornadoes, damaging thunderstormwind gusts,

and large hail at hourly intervals during the period of record. Through dynamical downscaling, the regional

climate model does an admirable job of replicating the seasonal spatial shifts of hazardous convective weather

occurrence during the months examined. Additionally, the interannual variability and diurnal progression of

observed severe weather reports closely mimic cycles produced by the regional model. While this methodology

has been tested in previous research, this is the first study to use coarse-resolution global climate model data to

force a high-resolution regional model with continuous seasonal integration in theUnited States for purposes of

resolving severe convection. Overall, it is recommended that dynamical downscaling play an integral role in

measuring climatological distributions of severe weather, both in historical and future climates.

1. Introduction

Preliminary research suggests that environmental

controls related to hazardous convective weather (HCW;

tornadoes, severe wind gusts, and large hail) will increase

in response to elevated greenhouse forcing (Del Genio

et al. 2007; Trapp et al. 2007a, 2009; Van Klooster and

Roebber 2009; Gensini et al. 2013; Diffenbaugh et al.

2013). Despite this evidence, climate change assessments

have largely avoided any conclusions regarding potential

changes of HCW in a future climate [see discussions in

Alley et al. (2007), Karl et al. (2009), and Brooks (2013)].

This is primarily due to problems with the historical re-

cord of observed HCW reports, the link between HCW

reports and associated environmental controls, and the

large spatial scale at which global climate models

(GCMs) operate relative to HCW.

The widely used Community Climate System Model

version 3 (CCSM3; Collins et al. 2006)GCM is a spectral

model with 85-wavenumber triangular truncation (ap-

proximately 1.48 resolution at the equator) in the hori-

zontal (Collins et al. 2006). This GCM configuration

translates roughly to a 150-km horizontal grid spacing in

the central United States, whereas explicit resolution of

convection should be done at a horizontal grid scale of

less than or equal to 4 km (Weisman et al. 1997). There-

fore, the resolution of typical GCM output lacks the

ability to resolve HCW. The current understanding of

potential changes in future HCW regimes is limited to

environmental controls. While moreHCWenvironments

couldmeanmore events in the future, such environments

are periods when the atmosphere is favorable for orga-

nized HCW, not that it will necessarily occur.

Recent exploratory research has indicated that dy-

namical downscaling of GCM data has become possible

owing to enhanced model microphysics schemes, in-

creases in computer processing speed, and new GCM

data availability (e.g., Trapp et al. 2011; Robinson et al.

2013; Mahoney et al. 2013). Thus, the purpose of this

research is to utilize dynamical downscaling to explicitly

resolve proxy HCW events using GCM input data. Spe-

cifically, this manuscript will examine a GCM historical
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period (1980–90) driven via reanalysis in relation to ob-

servedHCW reports. This historical baseline will provide

a comparison for future period simulations and bias

correction estimates.

2. Background

Dynamical downscaling is amethod for obtaining high-

resolution climate information from relatively coarse-

resolution GCM output. Using dynamical downscaling,

recent research indicates it is now practical to downscale

GCM-scale output to the 4-km grid spacing (Trapp et al.

2007b; Trapp et al. 2011; Robinson et al. 2013) required

for resolving deep convective processes (Weisman et al.

1997). In fact, a recent study has explored the use of

dynamical downscaling at a spatial resolution of 1.5 km

(Kendon et al. 2012), while several other studies have

performed seasonal downscaling at or below 3 km (e.g.,

Hohenegger et al. 2008; Sato et al. 2009; Langhans et al.

2013; Warrach-Sagi et al. 2013; Prein et al. 2013). Gen-

erally, these studies all found utility in the increased

spatial resolution provided by dynamical downscaling

for their respective research. For severe convection,

dynamically downscaled global reanalysis data [similar

to the coarse resolution of many GCMs (;100km)] have

accurately represented HCW during the peak of the con-

vective season (May–June; Trapp et al. 2011; Robinson

et al. 2013). However, no studies have examined the use of

dynamical downscaling on historical GCM output for

HCW purposes in the United States.

It is important to note that despite a significant in-

crease in HCW reports over the last three decades, re-

search indicates that environmental controls factors

[i.e., convective available potential energy (CAPE) and

0–6-km shear; Gensini and Ashley 2011; Robinson et al.

2013] and modeled proxy reports (Robinson et al. 2013)

have exhibited little to no trend. This recent inflation in

HCWreports has been extensively documented (Doswell

and Burgess 1988; Grazulis 1993; Brooks and Doswell

2001, 2002; Verbout et al. 2006; Doswell 2007). Thus, the

recent increase in losses from severe thunderstorms

(Changnon 2001) and tornadoes (Brooks and Doswell

2001; Changnon 2009) can be attributed to societal and

economic changes rather than an increase in event fre-

quency (Bouwer 2011).

3. Methodology

Using 1980–90 historical data from the CCSM3,

a HCW proxy is gridded and summed to create a spa-

tiotemporal climatology for the months March–May.

The proxy used in this research will follow that used in

Trapp et al. (2011), using hourly thresholds of updraft

helicity (UH) and simulated composite radar reflectivity

(Z) as described byKain et al. (2008).UH andZ data are

obtained from CCSM3 data by dynamical downscaling,

using the nonhydrostatic Advanced Research core of

the Weather Research and Forecasting (WRF-ARW)

Model (hereinafter ‘‘WRF’’; Skamarock et al. 2008,).

Modeled proxy HCW reports are compared to observed

HCW reports over the same period using report data

obtained from the Storm Prediction Center (SPC) as

compiled for theNational ClimaticData Center (NCDC)

publication Storm Data. Although there are documented

problems with using Storm Data for convective research

purposes (Doswell and Burgess 1988; Brooks 2004), it is

currently the most comprehensive source for HCW cli-

matological information.

a. Region

The study region for this research encompasses all

points in theUnited States east of the Continental Divide.

This domain is centered on the central Great Plains re-

gion, which is characterized by the largest HCW fre-

quency on Earth (Brooks et al. 2003b). While it would be

ideal to include the entire United States in such a study,

onemust weigh the computational expense ofmodeling at

such a high spatial resolution against the expected benefit

of the results. Given that HCWrarely happens west of the

Continental Divide (Brooks et al. 2003a,b; Gensini and

Ashley 2011), this region has been omitted.

b. Model diagnostics

1) PARENT GCM CHARACTERISTICS

The CCSM3 is a coupled global climate model con-

sisting of atmosphere, land surface, sea ice, and ocean

components (Collins et al. 2006). Available data include

a control run (no changes in external climate forcing),

a twentieth-century simulation (containing the observed

changes of greenhouse gases, sulfate aerosols, volcanic

aerosols, and solar irradiance from the twentieth century),

and twenty-first-century scenarios (containing estimated

changes in greenhouse gas concentration and aerosol con-

centrations). For this particular study, 11 years (1980–90) of

a simulation initialized in 1870 and run through the

twentieth century (the CCSM3 b30.030e dataset) was

chosen in an effort to assess CCSM3 bias and error rel-

ative to actual HCW reports over the same period.

2) REGIONAL CLIMATE MODEL

As previously mentioned, the regional climate model

(RCM) used for dynamical downscaling in this study is

WRF-ARW (Skamarock et al. 2008). Initial conditions

for WRF are provided from CCSM3 at 0000 UTC

1 March of each year, and integrated over a 3-month pe-

riod, providing CCSM3 boundary conditions every 6h.
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Parameterizations of physical processes (Table 1) and

other aspects of the regional climate model configura-

tion are based on WRF simulations of HCW in the

United States (e.g.,Weisman et al. 2008; Kain et al. 2006;

Trapp et al. 2011; Robinson et al. 2013). The first 6 h of

the simulation are discarded, in addition to the first six

lateral-edge domain points, to account for model spinup

(Skamarock 2004). Since a cold start is initialized on

1 March of every HCW season, interannual soil moisture

memory is lost, despite the ability to capture seasonal soil

moisture feedbacks.

Nine pairs of UH/Z values were tested using frac-

tional gross error (FE) and mean bias (MB) statistics to

determine the most appropriate threshold for HCW

proxy occurrence (Fig. 1). This analysis suggests the

optimal proxy for a HCW event occurs when an hourly

model grid point exceeds Z values $40 dBZ juxtaposed

with UH values $60m2 s22. This threshold depicts

a relative minimum in FE but does display a slight pos-

itive bias, which changes through the analyzed months.

This threshold is slightly different than the 50–40 Z/UH

pair used in previous research (Trapp et al. 2011;

Robinson et al. 2013). This difference is subtle, considering

the differing WRF initial and boundary conditions [Na-

tional Centers for Environmental Prediction (NCEP)–

National Center for Atmospheric Research (NCAR)

global reanalysis rather than CCSM3] and the exami-

nation of an earlier period in the annual convective cycle

(March–May rather than April–June). The slightly

lower Z, but higher UH, values used in our study makes

TABLE 1. Relevant regional model configuration information.

Parameterization

Microphysics WSM6 (Hong and Lim 2006)

Shortwave radiation Dudhia (Dudhia 1989)

Longwave radiation RRTM (Mlawer et al. 1997; Iacono et al. 2000)

Land surface model Noah (Chen and Dudhia 2001)

Planetary boundary layer MYJ (Mellor and Yamada 1982)

Model parameters

Time step 24 s

Vertical levels 35

Horizontal grid point spacing 4 km

Initial/boundary conditions

Temperature, specific humidity, geopotential

height, u and y wind, surface pressure

Surface, 27 isobaric levels; 6-h intervals

Soil temperature, soil moisture 0–10, 10–40, 40–100, 100–200 cm; 6-h intervals

FIG. 1. Fractional gross error (gray bars; axis right) andmean bias (lines; axis left) by month for

nine Z/UH pairs examined in this study.
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physical sense as earlier months in the annual convective

cycle are typically dominated by a low-CAPE and high-

shear environment (Brooks et al. 2007) that are strongly

synoptically forced (Galway and Pearson 1981).

Although the RCM configuration, study months, and

proxy report methodology are similar to previous re-

search (Trapp et al. 2011; Robinson et al. 2013), there is

an important difference to note. This study employs a lon-

ger (continuous) integration time over the entire 3-month

period, which is different than the 24-h reinitialization used

in Trapp et al. (2011) and Robinson et al. (2013). This

longer integration time is desirable in climate modeling

as it supports a better representation of influences as-

sociated with longer-memory processes (e.g., soil mois-

ture) on HCW.

A 50-km fishnet grid was used to evaluate observed

and model-simulated HCW events. This grid length is

smaller than the;80 km used in previous severe weather

report climatologies (e.g., Brooks et al. 2003a) but greater

than the ;38-km grid length used in a similar downscal-

ing study (Trapp et al. 2011). This coarsened grid scale

helps compensate for errors in the spatial location of

observed HCW reports, and their interpolation to the

nearest 4-km RCM grid point.

4. Results

Model-simulated HCW reports closely mimic the

spatial evolution of observed reports for the months

analyzed (Fig. 2). That is, the RCM reflects an increase

in reports and a gradual northward progression of rela-

tive maxima consistent with the observed cycle of HCW

during this period. These results are consistent with

previous downscaling studies that examined April–June

(Trapp et al. 2011). In terms of magnitude, March shows

little bias relative to observations, whereas April (May)

FIG. 2. Frequency of 1980–90 March–May HCW as depicted by a RCM and observations. Plot region corresponds to the simulation

domain.
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shows a positive (negative) bias (Fig. 1). Additionally,

RCM simulated and observed HCW exhibit similar in-

terannual variability for the months March–May (Fig. 3;

bars). For example, March–May 1987 and 1988 are no-

table in the U.S. HCW climatological record for their

relatively low report occurrence. The RCM also depicts

relative minimums in simulated HCW during these

years. Although only 11 years are analyzed in this study,

and therefore any advanced statistical analysis is in-

hibited, the historical period run of CCSM3 with the

addition of a WRF as a RCM is able sufficiently capture

observed variability of HCW at the 4-km, hourly scale

during the months examined.

Spatial patterns of bias indicate population density

likely plays a role in influencing observed reports rela-

tive to those simulated by the RCM (Fig. 4). For ex-

ample, 1980–90 observed reports are shown to be higher

near larger cities such as Dallas–Fort Worth, Oklahoma

City, and Shreveport. Meanwhile, magnitudes of ob-

served reports are lower than modeled values on the

High Plains and in portions of Missouri and Arkansas

where lack of population (and hence reports) is a key

factor. In addition, there is a general underestimation of

HCW occurrences by the RCM in many portions of the

southeasternUnited States (Fig. 4). This underestimation

regularly occurs in the month of May and may be at-

tributable to convective mode and scale of forcing for

ascent. For example, supercell thunderstorms are most

common in the central plains of the United States, and

a grid spacing of 4 km better resolves these mesocyclones

versus the storm-scale rotation associated with quasi-

linear convective severe weather common across the

southeastern United States. Similar biases were found

during the months of May and June by Trapp et al.

(2011). Using these results, future period simulations can

be bias-corrected to account for such errors (Christensen

et al. 2008). However, it is unknown if these errors orig-

inate from the parent GCM, manifest in the RCM due to

choice of model configuration, or are simply errors as-

sociated with reporting in Storm Data.

To supplement confidence in these simulated reports,

environmental controls (i.e., CAPE and 0–6-km shear)

known to support HCW were examined. These envi-

ronmental controls serve as indicators to the climato-

logical locations where onemight expect HCW to occur.

When restricting analysis of environments to 0000 UTC

and resampling RCM output to a 32-km grid length [in

order to compare to the North American Regional Re-

analysis (NARR); Mesinger et al. 2006], it is shown that

the RCM used herein also replicates the interannual

variability of proxy significant severe weather environ-

ments (Fig. 3; lines). Line values (secondary axis) shown

in Fig. 3 are RCM domain-averaged 0000 UTC frequen-

cies of the proxy C composite parameter following the

methodology of Gensini and Ashley (2011). While the

statistical significance is limited in this relatively short

temporal series, it is encouraging to see a historical pe-

riod RCM run capture the interannual variability of

FIG. 3. Proxy RCM and observed HCW reports (bars; primary axis) and 0000 UTC domain-

averaged proxy C-composite values (following Gensini and Ashley 2011) from the North

American Regional Reanalysis and the RCM used in this study (lines; secondary axis).
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environments favorable for HCW as depicted by the

NARR. This strengthens the previous notion that RCMs

can adequately capture the interannual variability of ob-

served HCW.

In addition to seasonal spatiotemporal analysis, di-

urnal convective cycles were also examined (Fig. 5). This

analysis suggests that high-resolution RCMs can ade-

quately capture the diurnal cycle of HCW. Hourly

modeled proxy reports explain 96% of the variability

associated with observed reports. In fact, only one hour

(0800 UTC) showed no overlap in the 10% error range

of hourly observed and simulated HCW. The HCW

peak in the RCM occurred at 0000 UTC (2890 reports),

whereas observations peaked slightly earlier at 2300UTC

(3157 reports). This is similar to the WRF delayed

maximum in rainfall intensity observed by Clark et al.

(2007). It should be noted that agreement herein is likely

improved due to stronger HCW forcing mechanisms

(e.g., fronts) during themonthsMarch–May (Galway and

Pearson 1981). It is probable that this similarity would

diminish as the HCW season progresses into June–

August when subtler forcing for ascent is present (Liu

et al. 2006).

5. Summary and conclusions

We have utilized high-resolution (4 km; hourly) re-

gional climate modeling to simulate a proxy for the

variability of tornadoes, damaging thunderstorm wind

gusts, and large hail across the eastern two-thirds of the

United States for the months March–May during the

period 1980–90. This process used GCM output from

CCSM3 to driveWRF (theRCM).A proxy forHCWwas

developed utilizing methodology from Trapp et al. (2011)

FIG. 4. Spatial difference between RCM proxy and observed severe weather reports for the

period 1980–90. Yellow asterisks (*) indicate the locations of Oklahoma City, Oklahoma;

Dallas–Fort Worth, Texas; and Shreveport, Louisiana.
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and Robinson et al. (2013). However, continuous inte-

gration over the 3-month periodwas employed in this study

to best replicate long-memory processes, a suggestion

from previous research.

Overall, proxy HCW events simulated by the WRF as

aRCMdepict skill in the spatiotemporal distributions of

hazardous thunderstorms during the months examined.

Proxy report analysis is strengthened using an environ-

mental control parameter that exhibits strong interannual

correlation between RCM generated and reanalyzed

environments. Spatial biases are present, indicating that

evaluatingHCWoccurrence at small spatial scales should

be done with caution. Instead, evaluations HCW occur-

rence from RCM output may be best done at GCM res-

olution.Alongwith studies such asTrapp et al. (2011) and

Robinson et al. (2013), this research further indicates that

dynamical downscaling of data with relatively coarse grid

length to the resolution needed to explicitly resolveHCW

is a productive endeavor.

To date, the main limitation of performing dynamical

downscaling analysis for purposes of resolving HCW

continues to be the lack of temporal length (i.e., we use

an 11-yr period), owing to the computationally expen-

sive nature of performing dynamical downscaling. This

will be mitigated in the future as additional years and

months are simulated, along with additional parent/child

GCMs/RCMs, creating an ensemble estimation of both

historical and future HCW occurrence. These GCM-

driven dynamically downscaled scenarios must play

a vital role in our understanding of potential changes in

futureHCWdistributions andwill serve as a comparison

to environmental methods (Del Genio et al. 2007; Trapp

et al. 2007a, 2009; Van Klooster and Roebber 2009;

Gensini et al. 2013; Diffenbaugh et al. 2013) used to

estimate such changes in previous research.
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