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ABSTRACT

The significant tornado parameter is a widely used meteorological composite index that combines several

variables known to favor tornadic supercell thunderstorms. This research examines the spatial relationship

between U.S. tornado frequency and the significant tornado parameter (the predictor covariate) across four

seasons in order to establish a spatial–statisticalmodel that explains significant amounts of variance in tornado

occurrence (the predictand). U.S. tornadoes are highly dependent on the significant tornado parameter in a

climatological sense. The strength of this dependence is seasonal, with greatest dependence found during

December–February and least dependence during June–August. Additionally, the strength of this

dependence has not changed significantly through the 39-yr study period (1979–2017). Results herein rep-

resent an important step forward for the creation of a predictive spatial–statistical model to aid in tornado

prediction at seasonal time scales.

1. Introduction

It is well known that atmospheric conditions supportive

of supercell thunderstorms are generally characterized

by low static stability, high surface water vapor mixing

ratios, a liftingmechanism (e.g., a boundary or orographic

feature) to get air parcels to the level of free convection,

and adequate deep-layer vertical wind shear (McNulty

1985; Johns andDoswell 1992; Rasmussen andBlanchard

1998; Rasmussen 2003). In addition to these, tornadic

supercell thunderstorms also require minimal convec-

tive inhibition, relatively low lifting condensation level

heights, and sufficient low-level storm-relative helicity

(Brooks et al. 2003; Thompson et al. 2003). To concen-

trate these ingredients into a simple diagnostic metric, a

composite index known as the significant tornado pa-

rameter (STP) was developed to statistically discrim-

inate significant tornado [(E)F21] from nontornadic

environments (Thompson et al. 2003, 2004). STP was

designed as a diagnostic environmental discriminator

for significantly tornadic versus nontornadic supercells,

but it is now becomingmorewidely used in various tornado

research and forecasting applications (Potvin et al. 2010;

Grams et al. 2012; Thompson et al. 2012; Gensini and

Marinaro 2016; Allen et al. 2018; Gensini and Brooks

2018; Molina et al. 2018).

The main goal of this work is to statistically model

tornado frequency as a function of climatological as-

pects of STP. We examine the dependence of tornado

frequency on the STP and quantify the tornado rate of

occurrence as a function of this covariate. Initial tornado

report locations for different seasons are considered as a

realization of a spatial point pattern with density l(s),

defined as the number of touchdowns per unit area for

location s. If the process is homogeneous, l(s) would be

constant across the whole study domain and no prefer-

ence would be found for reports at any given location. If

the process is independent, information about tornado

report frequency in one region would no offer infor-

mation about tornado report frequency in another region.

Both homogeneity and independence would character-

ize a completely spatial random process (CSR). Initial

exploratory data analysis indicates the lack of complete

spatial randomness of tornado frequency across the

United States with a nonhomogeneous density, suggest-

ing a dependence of the density process l(s) on covariate

predictor STP, with varying strengths of dependence.
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interannually during the period of 1979–2017. Finally,

the tornado density process is modeled as a function of

the STP for different seasons to quantify the density

factor modifying baseline tornado reporting rate with-

out considering the covariate effect.

The paper is organized as follows. Section 2 provides

a background description of the problem and previous

attempts to apply statistical models of the convective

environment to tornado reports. Section 3 describes

data used in this analysis and the selectedmethodologies/

statistical tests to quantify tornado report dependence on

climatological STP metrics. Section 4 provides statistical

evidence of the dependence of tornado reports on the

STP covariate for two extreme, but opposite, report

frequency years and quantification of the strength of

this dependence as a function of season and year. In

addition, we include estimations and parameter inter-

pretations for the proposed density process models.

Finally, a summary of the findings is provided in section 5.

2. Background

A few recent studies have examined and modeled

various aspects of the U.S. tornado report climatology.

These studies investigate various temporal and spatial

scales with the overarching goal of modeling tornado

frequency as a function of some statistically significant

covariate. At the climate scale, tornado report counts

have been modeled using a negative binomial distribu-

tion with parameters depending on population density

and elevation roughness to account for spatial variabil-

ity of tornado activity (Elsner et al. 2016). This roughly

county-level spatial statistical model focused on the

fixed effects of population density and elevation rough-

ness for a limited spatial area over the Great Plains of

the United States. Results were most significant over

the state of Kansas using this approach, and the model

was found to best serve as a potential first guess for

understanding the local climatological distributions

of tornadoes, helping to confirm earlier work showing

the importance of topography on U.S. tornado frequency

(Karpman et al. 2013). However, these works did not

attempt to address potential variability in tornado fre-

quency as a function of atmospheric environmental

parameters.

At the monthly scale, Poisson regression has also dem-

onstrated skill in explaining the variance associated

with monthly tornado frequency by using an observation-

based covariate of monthly averaged atmospheric pa-

rameters (Tippett et al. 2012, 2014). Specifically, these

studies used environmental measures of storm-relative

helicity and convective precipitation to explain variance

in U.S. tornado frequency by month. Results were

statistically significant for most months and proved

skillful in representing the interannual variability of

monthly tornado reports at the spatial scale of NOAA

climate regions. Additional studies have demonstrated

promising results using hierarchical Bayesian model-

ing using population (Anderson et al. 2007) and ENSO

(Wikle and Anderson 2003), but the work herein is

more closely related to studies such as Tippett et al.

(2012), Tippett et al. (2014), and Cheng et al. (2016) that

all utilize environmental variables pertinent to tornado

formation to explain spatiotemporal variability.Wediffer

from these works by using an inhomogeneous Poisson

process to create a nonparametric modeled estimation

of gridpoint seasonal tornado frequency using a well-

documented meteorological composite index.

With a myriad of potential environmental metrics

to choose from, this study focuses on a composite

index parameter (STP) that is skillful in discriminating

significantly tornadic and nontornadic supercells in a

diagnostic setting (Thompson et al. 2003, 2004). At

the prognostic time and space scales associated with

nowcasting, STP has also proved useful in the develop-

ment of conditional probabilities for significant tornadoes

using logistic regression given some a priori knowledge of

the convective mode (Togstad et al. 2011). In addition,

recent research has focused on the use of STP as a cli-

matological indicator of tornado frequency (Gensini

and Brooks 2018), and the use of STP to explain spatial

patterns of tornado frequency associated with various

atmospheric teleconnections (Gensini andMarinaro 2016;

Allen et al. 2018; Molina et al. 2018). The former study

noted that the annual sum of the daily max STP value

explained 45% of the interannual variance in annual

U.S. tornado report counts, but was dependent onmonth.

Notably, the month of August was found to have the

lowest explanatory capability of any month, likely as-

sociated with the challenge of forecasting tornadoes

during the boreal summer months (Hart and Cohen

2016). This portion of the seasonal cycle represents

an ongoing challenge in the climatological modeling,

analysis, and prediction of U.S. tornadoes.

This research has some caveats because of the use

of an atmospheric composite parameter (Doswell and

Schultz 2006). For example, tornadoes can occur with

STP values of 0, and the STP alone does not uniquely

define which aspects of the forecast parameter space

(e.g., instability, vertical wind shear) are most favor-

able for the potential generation of tornadic supercell

thunderstorms. Environments characteristic of low in-

stability, but adequate vertical wind shear (and thus low

STP values), pose a particular forecast challenge (Sherburn

and Parker 2014; Sherburn et al. 2016). It is also well

known that environmental conditions favorable for
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tornadoes do not necessarily indicate whether or not

tornadoes will occur. For example, the lack of a dynamic

lifting mechanism is associated with a known bias when

examining convective environments and not accounting

for a process to commence thunderstorm development

(i.e., convective initiation). This conservative bias is

shown at the monthly scale for STP and tornado report

standardized anomalies during the period of 1979–2017

(Gensini and Brooks 2018). Further discussion on the

topic of environmental bias is provided in Gensini and

Ashley (2011). Despite these caveats, environments

form the basis for severe convective storm forecast-

ing through use of an ingredients-based methodology

(Johns and Doswell 1992).

3. Methodology

a. Tornado reports

Tornado observations were obtained from theNational

Centers for Environmental Information (NCEI) Storm

Data (Schaefer and Edwards 1999) archive for the period

of 1979–2017. Reports of tornadoes are sensitive to

spatial and nonmeteorological biases relating to varia-

tions in population, subjectivity in (E)F rating, and other

discontinuities in the record (Verbout et al. 2006). Cli-

matologically speaking, such errors are much less likely

influence the stratified results herein given the large sample

sizes (N . 40 000).

b. NARR

STPwas calculated from theNorthAmericanRegional

Reanalysis (NARR; Mesinger et al. 2006) 3-hourly 3D

isobaric (29 pressure levels spanning 1000–100hPa) data

for all CONUS land points on the native 32-km Lambert

conformal grid for the period of 1979–2017. STP terms

include surface-based convective available potential en-

ergy (sbCAPE), surface-based lifted condensation level

(sbLCL), 0–1-km storm-relative helicity (SRH), and

0–6-km bulk vertical wind shear (BWS). All surface-

based parcels are calculated using the virtual tempera-

ture correction (Doswell andRasmussen 1994). The 0–1-km

SRH was calculated using the Bunkers storm motion

FIG. 1. Quarterly median values for the period of 1979–2017 of sumax(STP).
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vector (Bunkers et al. 2000), and 0–6-km BWS was cal-

culated by vertically interpolating NARR isobaric data

to AGL height coordinates and finding the magnitude

of the shear vector between 10m and 6 km. STP is a

unitless composite index, and is calculated here follow-

ing the Thompson et al. (2003) fixed-layer calculation:

STP 5
sbCAPE

1500 J kg21
3

2000m2 sbLCL

1000m

3
0–1-kmSRH

150m2 s22
3

0–6-kmBWS

20m s21
. (1)

The sbLCL term was set to 0 if .2000m and 1

if ,1000m; 0–6-km BWS was set to 0 if ,12.5m s21

and 1.5 if .30ms21. STP variable cutoff values are re-

lated to thresholds identified by previous studies (e.g.,

Brooks et al. 1994; Rasmussen and Blanchard 1998;

Thompson et al. 2003), which aid in discriminating

between significantly tornadic and nontornadic su-

percells. In addition, STP was set to 0 in the presence of

surface-based convective inhibition #250 J kg21 in an

attempt to only analyze environments with a limited

capping inversion. NARR has been shown to under-

estimate the strength of the capping inversion in por-

tions of the southern Great Plains, so caution should be

used when interpreting relationships between environ-

ments and reports in these regions (Gensini and Ashley

2011; Gensini et al. 2014).

c. Methods

1) STP SUMMARY STATISTICS

Following results from Gensini and Brooks (2018),

the daily (1200–1200 UTC) maximum STP value was

used to examine aspects of climatological tornado fre-

quency in this study. The quarterly (December–February,

March–May, June–August, September–November) sum

of the daily maximum STP value, herein defined as

sumax(STP), was considered as a representative STP

summary statistic. To represent the spatial and seasonal

FIG. 2. Quarterly histograms for the median values of sumax(STP) for the period of 1979–2017.
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patterns of the STP summary statistic, the median of all

quarterly values (39-yr record) was calculated for each

NARR CONUS grid cell. The well documented sea-

sonal cycle of CONUS tornado frequency is visually

apparent in the analysis of quarterly sumax(STP) me-

dian values (Fig. 1). Histograms of the quarterly median

sumax(STP) exhibit a logarithmic distribution, positive

skew, and largest values during March–May (Fig. 2).

2) TORNADO REPORTS

Latitude and longitude of tornado reports (initial

starting location) were aggregated by quarter and year.

FIG. 3. For year 1987 quarterly tornado reports (circles) with sumax(STP) percentile groups defined by probability intervals [0.5, 0.6),

[0.6, 0.7), [0.7, 0.8), [0.8, 0.9), and [0.9, 1.0], colored and labeled as 1, 2, 3, 4, and 5, respectively.

FIG. 4. As in Fig. 3, but for year 2011.
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Data were converted to a point pattern data format using

the R library spatstat ppp function (Baddeley et al. 2016).

Several tools are available within the spatstat library to

investigate spatial properties of a point pattern, and in

particular, to examine whether the hypotheses of homo-

geneity and complete spatial randomness are plausible

assumptions. In addition, to investigate these assump-

tions, there are a number of methods to quantify the

dependence of a point pattern on a covariate given by a

spatial raster field. These methods, and their relevance

to this study, are described in the following subsection.

3) TESTING DEPENDENCE ON A COVARIATE

Different test statistics were calculated to demon-

strate the dependence of tornado reports on the values

of sumax(STP). In point process theory, process density

refers to ‘‘process intensity.’’ We use the term process

density to avoid confusion with strength of the tornado.

For this demonstration, and because of the need for

brevity, we selected 2 years of data: one with the highest

observed quarterly reports (highest process density); and

another year with the lowest observed frequency of

quarterly reports (lowest process density). The selected

years were 2011 and 1987, respectively. Highest report

frequencies occurred inMarch–May 2011. Year 1987 had

its lowest observed quarterly report during December–

February. The following test statistics were applied to all

quarters for these two years to examine dependence in

two vastly different annual cycles of tornado frequency.

(i) x2 test on quadrats defined by a covariate

A formal dependence test of the density process on a

covariate was performed by using a x2 test for quadrat

counts. The quadrats are regions defined according to

the values of the covariate sumax(STP). These regions

can be of the same or different sizes. The null hypothesis

is that the point density process is a homogeneous point

pattern process with a Poisson distribution (completely

FIG. 5. For year 1987 quarterly tornado report density vs sumax(STP) percentile groups defined by probability intervals [0.5, 0.6), [0.6, 0.7),

[0.7, 0.8), [0.8, 0.9), and [0.9, 1.0] labeled as 1, 2, 3, 4, and 5 respectively.
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spatially random assumption), and the theoretical counts

are compared with the observed counts in the same

fashion as using a x2 test for independence. This test is

often used when comparing observed and expected

frequencies in climatological studies. Because of the

high proportion of observed zeroes in the covariate,

quadrats were created according to the STP quantiles

defined by the following limiting probability values:

(0.5, 0.6, 0.7, 0.8, 0.9, 1.0). Quadrat counts were com-

pared with theoretical counts under the assumption

of a Poisson process with quadrat counts proportional

to quadrat area. The chi-squared test statistic is calcu-

lated as

x2 5�
j

(observed2 expected)2

expected
, (2)

where the sum is over the total number of quadrats. If

the homogeneity assumption is rejected, tornado reports

are not homogeneous across the different quadrats.

(ii) Anderson–Darling test based on the exact values
of the covariate

If thepoint pattern is completely randomand independent

of a covariate, the values of the covariate at the report points,

zi 5Z(xi), would be a random sample of the covariate field.

The cumulative distribution functions (CDF) of the ob-

served values of sumax(STP), zi, at the report points F(z) is

compared to the CDF of the covariate at all spatial loca-

tions F0(Z). The Anderson–Darling test statistic is

calculated as a weighted average in the form

A5 n

ð‘
2‘

[F̂(z)2 F̂
0
(z)]2

F
0
(z)[12F

o
(z)]

dF
0
(z) . (3)

The empirical CDF for F(z) is estimated as

F̂(z)5
1

n
�
n

i51

Ifz
i
# zg , (4)

where I is the indicator function. The CDF F0(z) is

estimated as

FIG. 6. As in Fig. 5, but for year 2011. Note the different y-axis scale here vs Fig. 5.
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F
0
(z)’

No. of fpixels u :Z(u)# zg
No. of pixels

. (5)

In short, theA statisticmeasures the discrepancy between

the two CDFs, where the null hypothesis is H0:F0 5F,

and the alternative is H1:F0 6¼F.

(ii) Berman test for CSR

The Berman test represents another method to test the

dependence of a point pattern on a covariate Z. The Z2

Berman test was used in this context to test tornado report

dependence on the covariate sumax(STP). Let the ob-

served values of the covariate at the report locations be

represented as zi. These values are transformed to

F0(zi)5 ui, which is the spatial CDF of the covariate Z.

Under the null hypothesis of independence, the values of

ui have a uniform distribution from [0, 1], with mean 0.5

and standard deviation 1/
ffiffiffiffiffi
12

p
. The test statistic Z2 is the

standardized sum of the transformed values ui, where

Z25

ffiffiffiffiffi
12

n

r �
�
i

u
i
2 0:5

�
; (6)

Z2 has an asymptotic normal distribution under the null

hypothesis of independence of the point pattern on the

covariate.

4) STRENGTH OF THE DEPENDENCE ON A

COVARIATE

Besides testing the dependence of a point pattern on a

covariate, it is also important tomeasure the strength of this

dependence. Even if one rejects the null hypothesis of in-

dependence for a given level of significance, it is still plau-

sible that the dependence of the density process on the

covariate might be rather weak. To provide a dependence

quantification, it is common to measure the area under the

curve (AUC) of a receiving operating characteristic (ROC)

curve. A ROC curve enables the comparison of covariate

CDF values F̂(z) evaluated at the report locations Z(xi),

FIG. 7. Anderson–Darling test results for 1987. Observed CDF of sumax(STP) at all locations (black solid line). Expected

CDF of sumax(STP) at tornado report locations (red dashed line).
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against the CDF values of the covariate evaluated at all

locations u [Z(u)], F0(z), which is an estimate of the

fractional area less than z. The graphical representation is

similar to a probability–probability plot with F̂(z) in the y

axis and F0(z) in the x axis. If there is a preference of the

point pattern for high values of the covariate, high values

of F̂(z) would correspond to high values of the probability

F0(z). AUC values range from 0 to 1 where values close to

0.5 indicate poor dependence of the point pattern process

on the covariateZ(u) (i.e., low discrimination), whileAUC

values close to zero indicate high positive dependence

(i.e., higher discrimination) of the point pattern process

for spatial domains with higher values of the covariate.

4. Results

a. Dependence of tornado report density l(s) on
different interval values of the covariate

Quarterly values of sumax(STP) were split into per-

centile intervals with limiting value probabilities given

by [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), and [0.9, 1.0],

and the resulting values were plotted with associated

tornado reports corresponding to each subinterval, with

different colors assigned to each category labeled from

1 to 5 (not to be confused with tornado strength). Results

are presented here for year 1987 (lowest quarterly report

frequency on record; Fig. 3) and year 2011 (highest quar-

terly report frequency on record; Fig. 4). Formal de-

pendence of the density process on the covariate was

performed by using a chi-squared test for quadrat counts.

In this case, the quadrats are irregular areas for the ob-

served sumax(STP), defined by the percentile intervals

described above. The null hypothesis is that this process

is completely spatially random (CSR) and independent

of sumax(STP) value. The null hypothesis was rejected

for all quarters with p values # 0.0001, and thus it is

concluded that l(s) is dependent on sumax(STP).

For both a record low report quarter year (1987; Fig. 3)

and a record-high report quarter year (2011; Fig. 4), it is

evident that there is a preference for tornado reports to

FIG. 8. As in Fig. 7, but for year 2011. Note the different x-axis scale here vs Fig. 7.
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occur in the highest percentiles of sumax(STP) values.

Another, perhaps more simple, representation of the

density process as a function of the covariate values (as

defined by percentiles ranges) is to use a bar chart to

quantify the density process against percentile classes

for the different sumax(STP) percentile ranges. These

plots are again compared for 1987 (Fig. 5) and 2011

(Fig. 6). The y axis represents tornado report rate of

occurrence per unit area, which is referred to as the

point process density. This analysis indicates that quar-

ters 2 and 3 (March–May and June–August, respectively)

represent the highest tornado point process density and

are associated with the highest values of sumax(STP)

(which are percentiles corresponding to a [0.9, 1.0]

probability interval).

b. Anderson–Darling test for CSR

The Anderson–Darling test was performed to measure

potential discrepancies between the CDF of sumax(STP)

at the report locations with the CDF at all locations over

the CONUS. Another approach for this kind of test is

to use the Kolmogorov–Smirnoff statistic. However, the

Anderson–Darling test has proven more meaningful

since it is more sensitive to the tails of the distribution

than the Kolmogorov–Smirnoff (Razali and Wah 2011).

If the covariate values at report locations are a random

sample from sumax(STP), the two CDFs would be iden-

tical, indicating complete independence of the density

process on the covariate. The Anderson–Darling test

was applied by quarters for the two extreme years

considered in the previous analyses (Figs. 7 and 8 ). In

all quarters of both years, the p values were#0.0001 and

the null hypothesis that the point pattern density is

independent of the sumax(STP) covariate was rejected.

There is a big gap between the continuous line repre-

senting the cumulative probability distribution of the

covariate sumax(STP) at the report locations, from the

dashed line representing the cumulative probability

FIG. 9. For year 1987 nonparametric estimation of the tornado density process on the covariate sumax(STP). Solid black lines

are estimated values of r̂[Z(u)] and gray bands indicate the 95% confidence intervals. The x-axis tick marks represent observed values

of sumax(STP) from tornado reports for each quarter.
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distribution of sumax(STP) at all locations. The pro-

portion of observations for low to moderate values

of sumax(STP) at the tornado report locations is con-

sistently lower that the proportion of these values in the

study domain.

c. Nonparametric estimation of l(s) as a function of
covariate sumax(STP)

A formal test of dependence on a covariate, the

Berman Z2 test, was applied to each quarter for years

1987 and 2011 to formally test the dependence of the

tornado reports on the covariate sumax(STP). The test

yields very small p values (p ’ 0) for all quarters for

both years, which rejects the hypothesis of independence

in all cases.

All previous test statistics give enough evidence re-

garding the dependence of the density process l(s) on a

covariate Z(s) 5 sumax(STP). Thus, it is reasonable to

assume there exists a function r(�) that represents the
dependence of the process density on the covariateZ(s).

We can then infer l(s)5 r[Z(s)] and use a nonparametric

estimation of r[Z(s)]. This is performed using the func-

tion rhohat of theR library spatstat (Baddeley et al. 2016).

A ratio estimator of the form

r̂(z)5
1

jWjG0(z)
�
i

k[Z(s
i
)2 z] (7)

is used for r[Z(s)], where s1, s2, . . . , sn are the report

locations; jWj is the total number of pixels in the study

window; G(z)5 [No. of fpixels s : Z(s)# zg]/jWj; and
k(z) is a Gaussian kernel. G0(z) is a smooth estimate of

G(z). This estimator provides values of l(s) (y axis) as a

direct function of the covariate sumax(STP) (x axis).

The lower and upper 95% confidence intervals and

estimated values of r[Z(s)] are provided for each quar-

ter of years 1987 (Fig. 9) and 2011 (Fig. 10). For 1987,

quarter 1 indicates a general increase in density depen-

dence as sumax(STP) increases, whereas quarter 2 shows a

peak in dependence around a sumax(STP) value of 15.

Quarters 3 and 4 during 1987 show a broad nonparametric

FIG. 10. As in Fig. 9, except for year 2011. Note the different x- and y-axis scales here vs Fig. 9.
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estimation of dependence across all sumax(STP) values

indicating no strong preference for dependence based

on sumax(STP) value. Similar results are noted for amuch

higher tornado frequency year (2011) for all quarters

except quarter 3. In 2011, quarter 3 (June–August) showed

more of an increase in tornado density dependence on

sumax(STP) values. For both years, the tornado density

process increases with increasing sumax(STP) during

the annual climatological peak of U.S. tornado frequency

(March–May).

d. Yearly and seasonal variation of
dependence strength

ROC curves comparing the empirical cumulative prob-

ability distribution F̂(z) of the covariate sumax(STP)

at the report locations with the cumulative probability

distribution of the covariate sumax(STP) at all locations

[F0(z)] were calculated for each quarter and year of the

study period (1979–2017). Figure 11 shows box-and-

whisker plots indicating quarterly AUC values for all

years. Thick horizontal lines in the boxes represent

the median AUC values for each quarter. Recalling

that lower AUC values mean high process density de-

pendence on the covariate, we can confirm that the third

quarter (June–August) shows the highest AUC values,

resulting in a weaker discrimination of the tornado

reports on sumax(STP), in comparison with the first

(December–February), second (March–May), and fourth

(December–February) quarters. This is consistent with

previous research showing composite parameters (such

as STP) typically exhibit a reduction in explanatory

capability in the boreal summer (Hart and Cohen 2016;

Gensini and Brooks 2018).

A quarterly AUC time series was constructed for

the study period to examine any potential trends as-

sociated with the covariate dependence on tornado

reports (Fig. 12). The seasonal dependence of sumax(STP)

AUC becomes quite apparent from this analysis, with

the greatest dependence during quarter 1 (December–

February), and the least dependence during quarter

3 (June–August). This is again consistent with themonthly

standardized anomaly correlations shown in previous

research (Gensini and Brooks 2018). In addition, there

is a slight downward trend in the AUC time series over

the study period, indicating a greater dependence on

sumax(STP) through time (though this trend does not

appear to be significant). To quantify this further, a

multiple linear regression model was created with a

seasonal and trend component:

AUC
t
5b

1
t1a

j
1 «

t
. (8)

This model was fitted to the AUC time series, where b1

represents the linear trend coefficient for quarterly data,

aj represents the quarterly seasonal effects with j5 1, 2,

3, 4 and «t represents a normally distributed random

FIG. 11. Quarterly box-and-whisker plots of the AUC values for each ROC curve comparing F̂(z) with F0(z).
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error. The fitted model has an R2 5 0.957 and the esti-

mated coefficient b1 is negative (20.0004861) with cor-

responding p value5 0.04 for the slope significance t test.

e. Models fitted to the tornado density process as a
function of the covariate

From these statistical tests, it is reasonable to con-

clude that there is a significant effect of the covariate

sumax(STP) on the tornado report density function, and

that a point process model can be fitted to quantify impact

of the covariate on the report process density. Thus, an

inhomogeneous Poisson process was fitted to each quarter

of the years 1987 and 2011, with process density expressed

as a parametric model of the covariance in the form

l(u)5 exp[a1bZ(u)] , (9)

where the density l(u) is a log-linear model of the co-

variate Z(u), and a and b are model parameters to be

estimated.

Table 1 presents the estimated a and b values for each

quarter of 1987 and 2011. A value of b 5 0 implies a

constant density and independence of the covariate.

In all cases, we were able to reject the null hypothesis

that the coefficient b is equal to zero (p value ’ 0).

Interpretation of the estimated model parameters is as

follows: For 1987, the estimated value of l for the second

quarter (March–May) is exp(21.938) 5 0.14 tornadoes

per unit area for a value of sumax(STP) 5 0. This

amount would increase by to exp(21.938 1 0.102) 5
0.16 tornadoes per unit area, when the sumax(STP)

value increases 1 unit. This is equivalent to 1.79 torna-

does per 10 000 km2 per unit increase of sumax(STP).

5. Summary

This research explored using the significant tornado

parameter (STP) as a covariate to U.S. tornado frequency

FIG. 12. Quarterly time series of the AUC values for each ROC curve comparing the empirical CDF of sumax(STP)

at report locations [F̂(z)] with the CDF of sumax(STP) at all locations [F0(z)] for the period of 1979–2017.

TABLE 1. Inhomogeneous Poisson process parameters fitted to

the tornado report density as a function of covariate sumax(STP).

The model was fitted to each quarter of years 1987 and 2011.

Values in parenthesis are the standard errors of the estimates.

Quarter

1987 2011

â b̂ â b̂

1 24.469 0.222 23.845 0.248

(0.238) (0.021) (0.175) (0.018)

2 21.938 0.102 21.649 0.038

(0.070) (0.005) (0.062) (0.002)

3 22.281 0.104 21.870 0.053

(0.085) (0.006) (0.068) (0.002)

4 22.880 0.109 22.521 0.156

(0.113) 0.0123 (0.095) (0.009)
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in a climatological context.More specifically, the seasonal

(i.e., quarterly) sums of the daily maximum STP value

were tested for spatial dependence on tornado reports.

Through several statistical tests, we conclude that STP

is a statistically significant covariate to U.S. tornado

frequency at the aggregated time and space scales exam-

ined herein. Spatial dependence of a tornado report on STP

was found to vary by season, with greatest dependence

noted in the winter months (December–February). The

boreal summer season (June–August) exhibited the lowest

dependence which is consistent with previous research. In

addition, an interannual analysis of all quarters from 1979

to 2017 shows that the dependence of tornado reports on

STP has not changed significantly throughout time.

The most novel aspect of this research developed non-

parametric estimations of the spatial tornado density

process (i.e., tornado reports per unit area) as a function

of sumax(STP) for two vastly different tornado report

frequency years. In general, for both years and all quar-

ters, the tornado density point process increases as the

quarterly sumax(STP) value increases. The difference in

shape and slope of the nonparametric curves highlights

the need for inclusion of seasonal cycle information into

any climatological tornado model.

Finally, an inhomogeneous Poisson process was fitted

for both 1987 and 2011 by using tornado point density

expressed as a parametric model of the covariance.

These results develop a spatial–statistical model that

aids in the understanding of tornado density (dependent

variable) as a function of quarterly sums of dailymaximum

STP (independent variable) by season. Future work may

add a seasonal and interannual component to this model

and/or explore the incorporation of tornado strength into

the point process model. This analysis will assist in the

future development of predictive spatial–statistical models

that may aid in seasonal tornado forecasting.
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